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ABSTRACT 

This paper presents a study of MHD free convection flow of an electrically conducting incompressible fluid with 

variable viscosity about an isothermal truncated cone in the presence of heat generation or absorption. The fluid 

viscosity is assumed to vary as a inverse linear function of temperature. The non-linear coupled partial 

differential equations governing the flow and heat transfer have been solved numerically by using an implicit 

finite - difference scheme along with quasilinearization technique. The non-similar solutions have been obtained 

for the problem, overcoming numerical difficulties near the leading edge and in the downstream regime. Results 

indicate that skin friction and heat transfer are strongly affected by, both, viscosity-variation parameter and 

magnetic field. In fact, the transverse magnetic field influences the momentum and thermal fields, considerably. 

Further, skin friction is found to decrease and heat transfer increases near the leading edge. Also, it is found that 

the direction of heat transfer gets reversed during heat generation. 

Keywords - Variable viscosity, MHD, Free convection, Skin friction, Heat transfer, Truncated cone.

 

I. INTRODUCTION 
Natural or free convection is a mechanism, or 

type of heat transport, in which the fluid motion is 

not generated by any external source (like a pump, 

fan, suction device, etc.) but only by density 

differences in the fluid occurring due to temperature 

gradients. Natural convection is frequently 

encountered in our environment and engineering 

devices. A very common industrial application of 

natural convection is free air cooling without the aid 

of fans: this can happen on small scales (computer 

chips) to large scale process equipments. 

The problem of natural convection flow over the 

frustum of a cone has been investigated by several 

authors [1-6] and, in all the above studies the 

viscosity of the fluid had been assumed to be 

constant. However, it is known that viscosity can 

change significantly with temperature[7-12]. 

Recently, Hossain and Kabir [13] have investigated 

the natural convection flow from a vertical wavy 

surface with viscosity proportional   to an inverse 

linear of temperature. There has been a great interest 

in the study of magneto hydrodynamic (MHD) flow 

and heat transfer in any medium due to the effect of 

magnetic field on the boundary layer flow control 

and on the performance of many systems using 

electrically conducting fluids. This type of flow has 

attracted the interest of many researchers [14-16] due 

to its applications in many engineering problems such 

as MHD generators, plasma studies, nuclear reactors, 

geothermal energy extractions. Of late, Srinivasa et.al 

[17] have considered the effect of variable viscosity 

on MHD free convection from an isothermal  

 

truncated cone. The present investigation extends the 

study of [17] to include the effects of internal heat 

generation and absorption. 

 

II. MATHEMATICAL 

FORMULATION 
We consider the steady, two-dimensional 

laminar natural convection flow of a viscous 

incompressible fluid about a truncated cone along 

with an applied magnetic field. Figure 1 shows the 

flow model and physical coordinate system. The 

origin of the coordinate system is placed at the vertex 

of the full cone, where x is the coordinate along the 

surface of the cone measured from the origin, and y is 

the coordinate normal to the surface. A transverse 

magnetic field of strength B0 is applied in the 

direction normal to the surface of the truncated cone 

and it is assumed that magnetic Reynolds number is 

small, so that the induced magnetic field can be 

neglected. The boundary layer is assumed to develop 

at the leading edge of the truncated cone (x = x0 ) 

which implies that the temperature at the circular 

base is assumed to be the same as the ambient 

temperature T. The temperature of the surface of the 

cone Tw is uniform and higher than the free stream 

temperature T∞ (Tw > T). As stated in the 

introduction, property variations with temperature are 

limited to and viscosity. However, variations in the 

density are taken into account only in so far as its 

effect on the buoyancy term in the momentum 

equation is concerned (Boussinesq approximation). 

 

 

RESEARCH ARTICLE                   OPEN ACCESS 



A.H.Srinivasa Int. Journal of Engineering Research and Applications                           www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 2, (Part - 2) February 2016, pp.35-41  

 www.ijera.com                                                                                                                                  36|P a g e  

 
Figure. 1 The Geometry and the coordinate 

system 

 

Under the above assumptions, the two-

dimensional MHD boundary layer equations for 

natural convective flow of the electrically conducting 

fluid over a truncated cone, valid in the domain x0   x 

  , are as follows:                  
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The boundary conditions to be satisfied by the above 

equations are given by 
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In the present investigation, a semi-empirical formula 
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for the viscosity of the form as developed by Ling 

and Dybbs[18], has been adopted, where μ is the 

viscosity of the ambient fluid and   is a constant. 

We have assumed the boundary layer to be 

sufficiently thin in comparison with the local radius 

of the truncated cone. The local radius to a point in 

the boundary layer can be replaced by the radius of 

the truncated cone r, r = xsin, where  is semi 

vertical angle of the cone. 

Introducing the following transformations: 
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to equations (1)-(3), we see that the continuity 

equation (1) is identically satisfied and the  Eqs. (2) 

and (3) reduce, respectively, to  
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where  (= (Tw -T)) is termed as the viscosity 

variation parameter, which is positive for heated 

surface and negative for a cooled surface. 

Here  (=μ/) is the free stream kinematic 

viscosity,   and  f is dimensional and dimensionless 

stream function, respectively,  is the pseudo 

similarity variable and  is the dimensionless 

temperature of the fluid in the boundary layer region. 

where u, v are the fluid velocity components in the x- 

and y-direction, respectively, g is the gravitational 

acceleration,   is the coefficient of thermal 

expansion, T is the temperature inside the boundary 

layer, α is the thermal diffusivity,  is the fluid 

density, μ  is the dynamic viscosity of the fluid, M 

non-dimensional magnetic parameter, Pr is Prandtl 

number, Grx is local Grashof number,  is  viscosity 

variation parameter, x streamwise coordinate, x* 

distance measured from the leading edge of the 

truncated cone,   dimensionless distance. 

The heat generation or absorption parameter Q  

appearing in Eqn. (8) is the non-dimensional 

parameter based on the amount of heat generated or 

absorbed per unit volume given by 

,)(0 TTQ with Q  being constant coefficient that 

may take either positive or negative values. The 

source term represents the heat generation that is 

distributed everywhere when Q  is positive ( 0Q ) 

and the heat absorption when Q  is negative 

( 0Q ); Q  is zero, in case no heat generation or 

absorption. 

The boundary conditions for the above non 

dimensional equations (7)-(8) are given by  
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In practical applications, the physical quantities 

of principle interest are the shearing stress w and the 

rate of heat transfer in terms of the skin friction 

coefficient (Cf) and Nusselt number (Nu), 

respectively, which are written as    
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III. RESULTS AND DISCUSSION 
The system of coupled, non linear partial 

differential equations (7) and (8) along with the 

boundary conditions (9) using the relations (10) - 

(11) has been solved numerically employing an 

implicit finite difference scheme along with 

quasilinearization technique. Since the method is 

described in great detail in Ref [19], its description is 

omitted here for the sake of brevity. In order to assess 

the accuracy of our numerical method, our results are 

found to be in good agreement with those of [17], 

correct to four decimal places of accuracy. 

The numerical results are obtained for various 

values of magnetic field parameter M (0  M  1.0), 

viscosity variation parameter  (=0, 0.5, 1.0) and 

presented graphically in Fig. 2 – 7.  

The skin friction coefficient [Cf(Grx*)
1/4

] and heat 

transfer coefficient [Nu(Grx* )
-1/4

] for various values 

of  magnetic field M (= 0.0, 0.5, 1.0 ) and for 

viscosity variation parameter   = 1.0 and Pr = 0.72 

along the streamwise coordinate () is presented in 

Figures 2(a) & 2(b), respectively. It is evident that 

Cf(Grx*)
1/4

 and  Nu(Grx*)
-1/4

 found to decrease with 

increase of M. Also, Cf(Grx*)
1/4

 is observed to 

decrease near the leading edge  ( = 0),  while 

Nu(Grx*)
-1/4

 exhibits an increasing trend near  = 0. 

The percentage of decrease in Cf(Grx*)
1/4

  is 33.2%  

near  = 5.0,  when M is increasing from M = 0.0 to 

M = 1.0. On the other hand, there is 6.35 % decrease 

in the value of  Nu(Grx*)
-1/4 

at the same stream wise 

location, in the range of 0  M  1.0    
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Figure: 2 (a) Skin friction (b) Heat transfer 

coefficient for different values of M 

 

Figure 3 shows the velocity and temperature 

profiles for different value of M (0  M  1.0) with  

= 1.0 for Pr = 0.7 at the streamewise coordinate  = 

5.0. It is observed that velocity decreases and 

temperature increases with increase of magnetic field 

(M). Indeed, the magnetic field normal to the flow in 

an electrically conducting fluid introduces a Lorentz 

force, which retards the flow. Consequently, the peak 

velocity decreases [See Fig.3 (a)] and the temperature 

increases [See Fig.3 (b)], within the boundary layer, 

due to retarding effect. 
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Figure: 3(a) Velocity and Temperature profile for 

different magnetic field M 

 

The effect of  = (0.0, 0.5, 1.0) on the surface 

shear stress in terms of the local skin friction 

coefficient   [Cf(Grx* )
1/4

]   and the rate of heat 

transfer in terms of the local Nusselt number 

[Nu(Grx* )
-1/4

] are depicted graphically  in figure 4(a) 

and 4(b), when M = 0.5 and Pr = 0.72. From this 

figure it can be noted that an increase in the variable 

viscosity variation parameter, the skin friction 

coefficient decreases and to increase the heat transfer 

rates. Here it is concluded that for high viscous 

fluids, the skin friction is less and the corresponding 

rate of heat transfer is high. It also seen that the skin 

friction decreases by 34 % and rate of heat transfer 

increases by 0.59 % as   increases from 0.0 to 1.0 at 

the stream wise coordinate  = 5.0. 
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Figure: 4 (a) Skin friction and 4 (b) Heat transfer 

coefficient for different values of viscosity 

variation  parameter  
 

The velocity and temperature profile for 

variation viscosity parameter () for an magnetic field 

(M = 0.5) and Prandtl number (Pr = 0.72) along 

streamewise coordinates is shown in figure 5(a) and 

5(b) respectively. It is evident from figure that 

velocity increases while, temperature decreases with 

the increase of . 



A.H.Srinivasa Int. Journal of Engineering Research and Applications                           www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 2, (Part - 2) February 2016, pp.35-41  

 www.ijera.com                                                                                                                                  39|P a g e  

0 1 2 3 4 5
0.00

0.25

0.50

f 
'



 = 0.0, 0.5, 1.0
(a)

M = 0.5

Pr = 0.72

 = 10.0

 

 

 

 

 

0 1 2 3 4
0.0

0.5

1.0





 = 0.0, 0.5, 1.0

(b)M = 0.5

Pr = 0.72

 = 10.0

 

 

 

 
 

Figure: 5(a) Velocity and Temperature profile for 

different values of viscosity variation parameter  
 

The influence of heat generation (Q >0) or 

absorption parameter (Q <0) on heat transfer 

coefficient   [Nu(Grx*)
-1/4

] in the presence of the 

magnetic field (M = 0.5) is displayed in Fig.6. It is 

observed that   Nu(Grx*)
-1/4

  decreases with the 

increase of Q ( 0 Q 0.5) for  irrespective of heat 

generation or absorption. On the other hand, there is a 

mild increase in Nu(Grx*)
-1/4

 during both heat 

generation Q > 0and heat absorption Q <0 Indeed, 

the percentage of decrease of Nu(Grx*)
-1/4

  when Q 

increases from Q =0.0 to Q =0.5 at   = 3.0 is 44.39% 

while the percentage of increase of Nu(Grx*)
-1/4

  when 

Q decreases from Q = 0.0 to Q =0.5 at  = 3.0 is 

27.58% [Fig.6(a) & 6(b)]. Further, it is found that the 

direction of heat transfer gets reversed when Q=0.5 

[Fig.6 (a)]. This is attributed to the fact that heat 

generation mechanism creates a layer of hot fluid 

near the surface and finally resultant temperature of 

the fluid exceeds the surface temperature resulting in 

the decrease of rate of heat transfer from the surface. 

The heat generation or absorption parameter does not 

cause any significant effect on skin friction 

coefficient [Cf (Grx* )
1/4

] and hence it is not shown 

here. 
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Figure: 6 Effect of (a) heat generation and (b) heat 

absorption parameter Q on heat transfer 

Coefficients 

 

Fig. 7 depicts the effect of heat generation or 

absorption parameter on temperature profile in the 

presence of magnetic field (M = 0.5) with variable 

viscosity (). It is clearly observed that the thermal 

boundary layer thickness is increased in the presence 

of both heat generation and absorption. Further, it is 

evident from these figures that the present numerical 

results confirm to satisfy the thermal boundary layer 

conditions. The velocity profiles are unaffected by 

heat generation or absorption parameter and hence 

they are not shown here, for the sake of brevity. 
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Fig: 7 Temperature profiles for (a) heat    

generation Q > 0and (b) heat absorption Q < 0 

 

IV. CONCLUSIONS 
For different values of pertinent physical 

parameters, the effect of temperature dependent 

viscosity on the natural convection flow of a viscous 

incompressible fluid along isothermal truncated cone 

has been studied. From the present investigation the 

following conclusions may be drawn: 

 (i)  Both skin friction and heat transfer coefficients 

show a decreasing trend with the increase of 

magnetic parameter. However, skin friction is 

found to decrease and heat transfer increases 

near the leading edge.  

(ii)   In the free convection regime, the skin friction 

coefficient decreases and heat transfer coefficient 

increases with the increase of dimensionless 

distance. The velocity increases and temperature 

decreases along the   conical surface with the 

increase of magnetic parameter. 

(iii) The effect of increasing viscosity variation 

parameter results in decreasing the skin friction 

coefficient and increasing of the heat transfer 

coefficient.   

(iv)  The increase in the heat generation/absorption 

parameter results in decreasing the heat transfer 

coefficient. Also, during heat generation,the 

direction of heat transfer gets reversed.  

(v)   It is observed that the thermal boundary layer 

thickness is increased in the presence of both 

heat generation and absorption. 
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